Prompts to Enhance Grade-Level Science Learning

Crosscutting Concepts (CCC) and Science and Engineering Practices (SEP) help students to explore and explain Disciplinary Core Ideas (DCI). Enhance learning by connecting science concepts to real-world experiences through these practices.

- 1. Identify the CCC or SEP from the NGSS Performance Expectations.
- 2. Review Appendix G (CCC) or Appendix F (SEP) to focus on the descriptors for the appropriate grade level.
- 3. Use these descriptors to craft prompts that facilitate student thinking.

Here are some samples.

Crosscutting Concept Prompts

Students use *patterns* to organize, classify, and identify relationships.

- K-2: What patterns do we observe?
- **3-5:** How can we make a prediction using a pattern?
- 6-8: What patterns do we notice in the graphs and chart?
- 9-12: How do the patterns we see change at different scales?

Students investigate and explain the causes and effects of events.

- K-2: How can we cause something to change?
- 3-5: What evidence shows that one event causes another?
- 6-8: How can we use data to determine if a correlation suggests causation?
- 9-12: How can we use cause-and-effect in systems to predict behaviors?

Students understand how changes impact a system differently based on *scale, proportion, or quantity*.

- K-2: How can we measure to compare objects?
- 3-5: How do we describe quantities using standard measurement?
- 6-8: How do different scales help us understand a system?
- 9-12: How can patterns at one scale help us predict patterns at another?

Students break systems into parts, look at how they interact, and use models to explain and predict what will happen.

- K-2: What are the parts of objects and environments?
- 3-5: How do multiple parts work together to do what individual parts cannot?
- 6-8: How do systems interact with each other?
- 9-12: How can models help predict what will happen when the conditions change?

- 6-8: What factors determine whether a system is stable or changing?
- 9-12: How do irreversible changes and feedback loops affect a system's stability?

Science and Engineering Practice Prompts

Change

Students ask purposeful questions that can be investigated empirically.

- K-2: What do you wonder about this topic? How could we find out more?
- **3-5:** Which questions can we test and use to describe relationships?
- 6-8: How can we refine our questions so they clarify our argument?
- 9-12: How can we challenge the current understanding or interpretation?

Students create and use models to elaborate on and share their ideas.

- **K-2:** What can we draw or build to show a process?
- 3-5: How can we change or improve our model to make it more accurate?
- 6-8: How does our model help us explain what we cannot see?
- 9-12: How can my model generate data to solve problems?

Plan and

Carry Out

Investigations

Students investigate to explain how the world works.

- **K-2:** How can we collect data to answer our question?
- 3-5: What do we need to control in order to have a fair test?

6-8: How can we refine our plan to include multiple variables?

9-12: What are potential environmental, social, and personal impacts of our plan?

Students interpret data to identify patterns and draw conclusions.

Interpret Data

- **K-2:** What types of observations should we record and share?
- **3-5:** How can we organize our data to help us understand what's happening?
- 6-8: How do we determine if our data suggests correlation or causation?
- 9-12: How can we analyze and compare multiple sets and types of data?

Students describe phenomena, predict future events, or infer about the past.

- K-2: Based on what we observed, what do we think is happening, and why?
- **3-5:** What evidence supports the points of our explanation??
- 6-8: How do multiple pieces of evidence and scientific ideas help our explanation?
- 9-12: How can we refine our explanation to make it more scientifically valid?

Students use mathematics and computational tools to describe and predict.

- K-2: How can we use numbers to show what we observed?
- 3-5: How can organize our data to see patterns and relationships?
- 6-8: How can digital tools help us analyze very large data sets?
- 9-12: How can functions be used to analyze and model data?

Students use reasoning and argument to make a case for their ideas.

Engage in

Argument from Evidence

- **K-2:** What facts tell us that our idea is correct?
- **3-5:** How can I tell the difference between facts and opinions in an explanation?
 - 6-8: How can we compare the evidence in different arguments?
- 9-12: How can we evaluate competing claims using reasoning and evidence?

Students acquire and communicate accurate scientific information.

- K-2: What did we learn from what we read, and how can we share it?
- 3-5: How can we decide if information from a source is reliable?
- 6-8: How can we compare and synthesize information from multiple sources?
- 9-12: How can we share complex scientific ideas with different audiences?

Use Math and Computational Thinking

×÷

+